1

Fundamentals of Solid State Physics

Introduction

Xing Sheng 盛兴

Department of Electronic Engineering Tsinghua University <u>xingsheng@tsinghua.edu.cn</u>

Goal of This Course

- Study the foundations of our world: solid materials
 - **electronic, optical, magnetic, thermal, mechanical, ...**

Based on theories of physics

- classical mechanics
- electrodynamics
- quantum mechanics
- statistical mechanics
- ••••

Emerging applications: semiconductors, lasers, ...

Goal of This Course

Main Focus: Electrons

Department of Electronic Engineering 电子工程系

Other topics: Photons, Phonons, Magnetics, ...

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

10 core courses in EE department

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

v = iR	Ì
$v = L\frac{di}{dt}$	- JMJ-
$i = C\frac{dv}{dt}$	╧

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

$$\nabla \cdot \mathbf{D} = \rho_V$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

maths, engineering, application, design, model, perfect,

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

- Programming (程序)
- Circuits (电路)
- Data and Algorithm (数据与算法)
- Signals and Systems (信号与系统)
- Probability (概率)
- Digital Logics (数字逻辑)
- Communications (通信)
- Media and Cognition (媒体与认知)
- Electromagnetism (电磁场)
- Solid State Physics (固体物理)

observation, discovery, understanding, approximation, assumption, modified theory, imperfection,

Course Philosophy

"The eternal mystery of the world is its comprehensibility. ... The fact that it is comprehensible is a miracle."

这个世界最不可理解之处在于它是可以理解的

---- Albert Einstein

Solid is very Complex

If we understand the basic physics of all the fundamental particles (electrons, photons, atoms, ...), can we understand everything?

ARTICLES

More Is Different

By P. W. Anderson

+ See all authors and affiliations

Science 04 Aug 1972: Vol. 177, Issue 4047, pp. 393-396 DOI: 10.1126/science.177.4047.393

No!

Philip W. Anderson 1923–2020

Example: Carbon

- Diamond 金刚石
 - **hard**
 - insulating
 - **transparent**

- Graphite 石墨
 - □ soft
 - **conductive**
 - **black**

Example: CaCO₃

Chalk 粉笔

brittle

S. Strand, et al., Petro. Geosci. 13, 69 (2007)

Starfish 海星
robust

Optical and Electronic Devices

lasers

fibers

detectors

solar cells

metamaterials

photonic crystals

Flexible Heaters Force Sensors

Humidity Sensors

Airflow Current Sensors Sensors Liquid Level Sensors

Fiber Optics and

Infrared Sensors

Magnetic Sensors

Proximity Rotary Position Sensors

Sensors

integrated circuits

Nobel Prizes in Solid-State Physics

Before 1950s

- **atoms, materials, radiation, quantum mechanics, ...**
- I 1956 Semiconductor transistors
- 1991 Liquid crystals
- 2000 Integrated circuits
- 2009 CCD imaging sensors
- 2009 Optical fibers
- GaN based blue LEDs

'Disruptive' Technologies 颠覆性技术

Before 1950s

- **atoms, materials, radiation, quantum mechanics, ...**
- 1956 Semiconductor transistors
- 1991 Liquid crystals
- 2000 Integrated circuits
- CCD imaging sensors
- 2009 Optical fibers
- GaN based blue LEDs

- vacuum tubes
- CRT displays
- Computation
- **film cameras**
- copper cables
- incandescent light bulbs

Devices in a Smartphone

i ion	batteries	

GaN blue LEDs

CCD cameras

Transistors

Liquid crystals

Integrated circuits

Computation

slide rule

- abacus
- Ancient computers
- First 'electronic' computer
 - **ENIAC**, 1943
 - □ 30 tons, 200 kW
 - 18000 vacuum tubes
 - **5000 times/sec**
 - □ cost \$480,000

vacuum tube

Transistors

The first point contact transistor

William Shockley, John Bardeen, and Walter Brattain

Bell Laboratories, Murray Hill, New Jersey (1947)

Germanium Bipolar Transistor

Spring Collector Emitter Base

semiconductors

Shockley

1956 Nobel Prize in Physics

First Integrated Circuits

<u>The First (2D) Integrated Circuit</u> Jack Kilby, Texas Instruments, 1958

- Transistor, Resistors and Capacitors on the same piece of semiconductor
- Interconnects between components not integrated
- \rightarrow Low connectivity between components

Germanium

J. Kilby

2000 Nobel Prize in Physics 30

Modern Integrated Circuits

Moore's law, Fairchild, 1965

Economist.com

Modern Electronics is a real Nanotechnology

Intel i7 CPU, ~ 10⁹ transistors 31

Lighting

Incandescent bulb

GaN blue LEDs

S. Nakamura, et al., Appl. Phys. Lett. 64, 1687 (1994)

Fluorescent lamp

I. Akasaki H. Amano

o S. Nakamura

2014 Nobel Prize in Physics 32

Xing Sheng, EE@Tsinghua

Imaging

CCD and CMOS cameras

2009 Nobel Prize in Physics 33

Communication

copper cables

K. C. Kao, G. A. Hockham, *Proc. IEE* **113**, 1151 (1966)

optical fibers

K. Kao (高锟) 2009 Nobel Prize in Physics ₃₄

Displays

Cathode Ray Tube (CRT)

de Gennes 1991 Nobel Prize in Physics

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

Introduction (Week 1)

- Overview, history, applications
- Preliminary knowledge
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
 - Bravais lattices, Crystal structures, Defects
 - Reciprocal space, Brillouin zones
 - Materials Characterization: Wave diffraction, the Bragg law
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
 - Free electrons (the Drude and Sommerfeld models)
 - Electrons in a periodic potential, Bloch's Theorem
 - **The nearly free electron model, the tight-binding model**
 - Electronic band diagram, band gaps, effective mass, holes
 - Metals, insulators, semiconductors
 - Devices: junctions, diodes, transistors
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
 - Crystal vibration, phonon band
 - Thermal conductivity and capacity
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
 - **o** Origin of Dielectric constant (ε) and Refractive index (n)
 - Optical absorption, reflection, refraction, emission
- Magnetic Properties (Week 15)

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)
 - Origin of Magnetics
 - **Diamagnetism, Paramagnetism, Ferromagnetism**
 - Superconductivity

- Introduction (Week 1)
 - Overview, history, applications
 - Preliminary knowledge
- Materials and Crystal Structures (Week 2–3)
 - **Bravais lattices, Crystal structures, Defects**
 - **Reciprocal space, Brillouin zones**
 - Materials Characterization: Wave diffraction, the Bragg law
- Electronic Properties (Week 4–12)
 - **Free electrons (the Drude and Sommerfeld models)**
 - **D** Electrons in a periodic potential, Bloch's Theorem
 - **The nearly free electron model, the tight-binding model**
 - Electronic band diagram, band gaps, effective mass, holes
 - **D** Metals, insulators, semiconductors
 - Devices: junctions, diodes, transistors
- Thermal Properties (Week 13)
 - **Crystal vibration, phonon band**
 - Thermal conductivity and capacity
- Optical Properties (Week 14)
 - **Origin of Dielectric constant (***ɛ***) and Refractive index (***n***)**
 - **Optical absorption, reflection, refraction, emission**
- Magnetic Properties (Week 15)
 - Origin of Magnetics
 - **Diamagnetism, Paramagnetism, Ferromagnetism**
 - Superconductivity

Thank you for your attention